You are currently browsing the tag archive for the ‘alfred tarski’ tag.

This post is a sequel to my previous ad of a joint paper with Yaron, in which we prove existence of pure {\epsilon}-equilibria in certain games. I am now going to make a fuss over the fact that our result is essentially a collection of logical relations between linear inequalities, yet its proof seems to require Brouwer’s fixed point theorem.

I start with emphasizing game theory’s reliance on Brouwer’s Theorem to prove Nash’s Theorem, an outrage with which I have more or less already learned to live. I call this an outrage because Nash’s Theorem is essentially a theorem about logical relationships between algebraic inequalities. More formally, fix integers {n,m} and let {\xi_{n,m}} be the assertion that every {n}-player game with {m} strategies to every player admits a mixed Nash Equilibrium. Then {\xi_{n,m}} is a first order sentence in the language of ordered fields. The signature of this language is {(0,1,<,+,\times)} where {0,1} are constant symbols, {\leq} is a relation symbol and {+,\times} are binary function symbols. (Skip the next paragraph if this is obvious to you).

Indeed, let {\bar x} be a set of {(m^n)\cdot n} variables, representing the payoff matrix of an {n}-player game with {m} strategies for every player, and let {\bar p} be a set of {n\cdot m} variables representing a mixed strategies profile. Then

\displaystyle \xi_{n,m}=\forall \bar x~\exists \bar p ~\phi(\bar x,\bar p)

where {\phi(\bar x,\bar p)} is a formula that says that {\bar p} is a mixed Nash equilibrium in a game with payoff matrix {\bar x}. This is a conjunction of formulas that assert that {\bar p} is indeed a mixed strategy profile (nonnegative elements which sum to {1}), and that if player {i} plays action {j} with a positive probability under this profile then player {i} doesn’t gain from deviating to any pure strategy. The last assertion involved a somewhat unappealing term (the payoff for player {i} under profile {p} when the payoff matrix is {\bar x}), but this term is just products and additions of variables.

Now since by Tarski’s Theorem all real closed fields satisfy the same first order sentences, it follows that Nash’s Theorem is true in every real closed field ! Here is an interesting corollary of this conclusion: Every game in which the payoffs are algebraic numbers has an equilibrium in which the probabilities are algebraic numbers. Here is a more interesting corollary: In discounted stochastic games, an equilibrium strategy can be expressed as a fractional laurent series of the discount factor. This appears in a seminal paper (jstor) of Bewley and Kohlberg, who are to my knowledge the first to make this observation. I presented this paper in a students seminar back in grad school, probably the first paper in game theory I have ever read, and it is still one of my favorites.

Anyway, back to pure {\epsilon}-equilibrium. Read the rest of this entry »

Follow

Get every new post delivered to your Inbox.

Join 134 other followers