You are currently browsing the monthly archive for September 2012.
A paper by Azevdo, Weyl and White in a recent issue of Theoretical Economics caught my eye. It establishes existence of Walrasian prices in an economy with indivisible goods, a continuum of agents and quasilinear utility. The proof uses Kakutani’s theorem. Here is an argument based on an observation about extreme points of linear programs. It shows that there is a way to scale up the number of agents and goods, so that in the scaled up economy a Walrasian equilibrium exists.
First, the observation. Consider . The matrix
and the RHS vector
are all rational. Let
be an optimal extreme point solution and
the absolute value of the determinant of the optimal basis. Then,
must be an integral vector. Equivalently, if in our original linear program we scale the constraints by
, the new linear program has an optimal solution that is integral.
Now, apply this to the existence question. Let be a set of agents,
a set of distinct goods and
the utility that agent
enjoys from consuming the bundle
. Note, no restrictions on
beyond non-negativity and quasi-linearity.
As utilities are quasi-linear we can formulate the problem of finding the efficient allocation of goods to agents as an integer program. Let if the bundle
is assigned to agent
and 0 otherwise. The program is
subject to
If we drop the integer constraints we have an LP. Let be an optimal solution to that LP. Complementary slackness allows us to interpret the dual variables associated with the second constraint as Walrasian prices for the goods. Also, any bundle
such that
must be in agent
‘s demand correspondence.
Let be the absolute value of the determinant of the optimal basis. We can write
for all
and
where
is an integer. Now construct an enlarged economy as follows.
Scale up the supply of each by a factor of
. Replace each agent
by
clones. It should be clear now where this is going, but lets dot the i’s. To formulate the problem of finding an efficient allocation in this enlarged economy let
if bundle
is allocated the
clone of agent
and zero otherwise. Let
be the utility function of the
clone of agent
. Here is the corresponding integer program.
subject to
Its easy to see a feasible solution is to give for each and
such that
, the
clones in
a bundle
. The optimal dual variables from the relaxation of the first program complements this solution which verifies optimality. Thus, Walrasian prices that support the efficient allocation in the augmented economy exist.
Recent Comments